HHIF Lecture Series: Discounted Cash Flow Model

Alexander Remorov

University of Toronto

November 19, 2010

周 ト イ ヨ ト イ ヨ ト

3

Background: Efficient Market Hypothesis

- Assumptions: market is efficient; many investors; no inside information
- Therefore any new information is immediately reflected in stock price via supply and demand
- At any point in time a stock trades at its fair value, i.e. only normal rate of return provided to investor
- Therefore can't beat the market and should just invest in an index fund
- Then how does one explain Warren Buffet's or Goldman Sachs prop trading success?
- If the market were "rational" we would not have the stock movement observed in the past 3 years

- 本間 と えき と えき とうき

Valuation

- Some stocks don't trade at their fair value
- Objective: determine the intrinsic value of a company and compare with market value
- If the two values significantly differ, this could be a signal to trade the stock
- How can we value a company? What aspects to consider?
- Extreme Case: Deep Value Investing find extremely undervalued stocks (e.g. P/E below 7)
- This is how Warren Buffet started

・ 同 ト ・ ヨ ト ・ ヨ ト

DCF Steps

1. Forecast revenue growth

- Revenue determines all other financial statement items
- However, company cost structure will probably change
- 2. Forecast Free Cash Flows (FCF)
 - How much cash does the company have left to pay to investors?
 - More cash means higher value
- 3. Determine discount rate
 - \$100 today is not the same as \$100 one year from now
- 4. Calculate intrinsic value of the company
 - Determine present value of all future FCFs

< 回 ト < 三 ト < 三 ト

Forecast Revenue Growth

- 1. Determine Forecast Period
 - ► Slow growth: 1 year
 - Relatively fast growth: 5 years (standard)
 - High growth: 10 years
- 2. Forecast Revenue Growth Rate
 - What aspects to consider?
 - Historical growth, market share, economic situation, products, competition
 - Not easy to estimate
 - Could use analyst estimates
- 3. The big picture: How does the company make money?
 - Will it be able to make money in the future
 - If you can predict the firm's success (or failure) accurately, you win

- 4 週 ト - 4 三 ト - 4 三 ト

Forecast Revenue Growth - Example

Wal-Mart Stores Inc.

- Take forecast period of 5 years
- Revenue growth 2009-2010: 0.9%; 2008-2009: 7.3%
- Yahoo Finance Analyst 5-year annual growth estimate: 10.35%
- Expect moderate growth in the near future; as US economy improves, revenue will grow faster
- Very mature market; hard to achieve very high growth (e.g. 14%)

Year 0	Year 1	Year 2	Year 3	Year 4	Year 5
6.4%	8%	9%	10%	10%	10.5%
416.6B	449.9B	490.4B	539.5B	593.4B	655.7B

Table: Projected Revenue Growth

Forecast Free Cash Flows

$$FCF = NI - (CapEx - Dep) - \Delta WC + (ND - DR)$$
, where:
 $FCF =$ Levered Free Cash Flow (to Equity)
 $NI =$ Net Income
 $CapEx =$ Capital Expenditure, $Dep =$ Deprecitation
 $\Delta WC =$ Change in Working Capital
 $ND =$ New Debt, $DR =$ Debt Repayment

• Unlevered Cash flow: $FCF = EBITDA - CapEx - \Delta WC$

• Assume ND = DR, then formula becomes:

$$FCF = (R - C - I)(1 - t) + Dep - CapEx - \Delta WC$$
, where:
 $R =$ Revenue, $C =$ Operating Expenses,
 $I =$ Interest paid, $t =$ Tax Rate.

• Need to estimate future C, I, t, CapEx, ΔWC based on projections for revenue. How?

- 3

Forecast Free Cash Flows - Example

• Calculate as percentage of Revenue.

Wal-Mart Stores Inc. - Historical

	2005	2006	2007	2008	2009	TTM	
Revenue	315.7	348.7	378.8	405.6	408.2	416.6	
1 - Op. Margin	94.1%	94.1%	94.2%	94.4%	94.1%	94.05%	
Op. Costs	297.1	328.2	356.8	382.8	384.2	391.8	
Interest (%)	0.54%	0.63%	0.66%	0.67%	0.64%	0.60%	
Interest	1.7	2.2	2.5	2.7	2.6	2.5	
Tax Rate	33.4%	33.6%	34.2%	34.1%	32.4%	32.6%	
Depr. (%)	1.68%	2.09%	1.87%	1.95%	1.84%	1.87%	
Depr.	5.3	7.3	7.1	7.9	7.5	7.8	
CapEx (%)	4.62%	4.50%	3.93%	2.84%	3.14%	2.88%	
CapEx	14.6	15.7	14.9	11.5	12.8	12.0	
Δ WC	(1.2)	(1.4)	(0.6)	(1.3)	(4.3)	(4.0)	
FCF	3.1	5.1	5.6	11.0	13.9	14.8	
Alexander Remorov (University of Toronto)			HHIF Lecture Series: Discounted Cash Flow Model 8 /				

Forecast Free Cash Flows - Example

•
$$|FCF = (R - C - I)(1 - t) + Dep - CapEx - \Delta WC$$

Wal-Mart Stores Inc. - Forecast

	TTM	Year 1	Year 2	Year 3	Year 4	Year 5
Revenue	416.6	449.9	490.5	539.5	593.4	655.7
1 - Op. Margin	94.05%	94.05%	94.05%	94.05%	94.1%	94.1%
Op. Costs	391.8	423.1	461.3	507.4	558.4	617.0
Interest (%)	0.60%	0.61%	0.62%	0.62%	0.61%	0.60%
Interest	2.5	2.7	3.0	3.3	3.6	3.9
Tax Rate	32.6%	32.6%	32.6%	32.6%	32.5%	32.5%
Depr. (%)	1.87%	1.89%	1.92%	1.95%	2.0%	2.05%
Depr.	7.8	8.5	9.4	10.5	11.9	13.4
CapEx (%)	2.88%	2.95%	3.00%	3.10%	3.20%	3.30%
CapEx	12.0	13.3	14.7	16.7	19.0	21.6
ΔWC	(4.0)	(4.1)	(4.2)	(4.3)	(4.4)	(4.5)
FCF	14.8	15.5	16.6	17.5	18.5	19.8

Determine Discount Rate

 $\begin{aligned} & \mathsf{WACC} = \mathsf{W}_{\mathsf{d}}\mathsf{R}_{\mathsf{d}}(1-\mathsf{t}) + \mathsf{W}_{\mathsf{p}\mathsf{r}}\mathsf{R}_{\mathsf{p}\mathsf{r}} + \mathsf{W}_{\mathsf{e}}\mathsf{R}_{\mathsf{e}}, \text{ where:} \\ & \mathsf{WACC} = \text{Weighted Average Cost of Capital;} \\ & \mathsf{W}_{d} = \text{debt portion of financing,} \\ & \mathsf{R}_{d} = \text{cost of debt;} \\ & \mathsf{W}_{pr} = \text{preferred stock portion of financing,} \\ & \mathsf{R}_{pr} = \text{cost of preferred stock;} \\ & \mathsf{W}_{e} = \text{common stock portion of financing,} \\ & \mathsf{R}_{e} = \text{cost of common stock.} \end{aligned}$

- WACC weighted cost of all capital in the firm (same as the return the company requires to pay off all its capital providers)
- Often companies don't have preferred shares, so the preferred share term is not used
- WACC will give the discount rate at which to discount FCFs

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

WACC - Where to get information

$$W\!ACC = W_d R_d (1-t) + W_{
m pr} R_{
m pr} + W_e R_e$$

- Want to determine market value of debt, preferred stock, and common stock to get weights
- Value of common stock = market cap
 - Current share price \times # shares out
- Market value of preferred stock, debt close to book value
 - Get the numbers from most recent balance sheet
 - Long Term Debt = Notes Payable + Current Portion of Long Term Debt + Long Term Debt
- Cost of debt = yield on company's corporate bonds
 - Can find bond yields on Morningstar
 - Can also use company credit rating listed on Standard & Poors
- Tax Rate from past income statements
- Cost of equity can use CAPM: $R_e = R_f + \beta(R_m R_f)$
 - Can find stock beta from any financial website
 - *R_f* return on 20-year US bonds

- 4 周 ト 4 王 ト 4 王

Determine Discount Rate - Example

Wal-Mart Stores Inc.

- Has no preferred shares
- For Q2 2010: LT Debt = 45242 MM
- Market Cap (as of September 26, 2010): \$196850 MM
- Debt portion: 18.7%, Equity portion: 81.3%
- Coupon Rate on most recent WMT bonds: 6.50%
- Forecast tax rate: 32.6%
- Cost of Equity: $R_e = 3.50 + 0.29(7.0 3.5) = 4.5\%$
 - Beta: 0.29
 - > 20-year US bond rate: 3.50% (as of September 24, 2010)
 - S&P 500 Return (historical): 7%
- Bond coupon Rate is greater than expected stock return?!?

Determine Discount Rate - Example

Wal-Mart Stores Inc.

- Has no preferred shares
- For Q2 2010: LT Debt = 45242 MM
- Market Cap (as of September 26, 2010): \$196850 MM
- Debt portion: 18.7%, Equity portion: 81.3%
- Coupon Rate on most recent WMT bonds: 6.50%
- Forecast tax rate: 32.6%
- Cost of Equity: $R_e = 3.50 + 0.29(7.0 3.5) = 4.5\%$
 - Beta: 0.29
 - > 20-year US bond rate: 3.50% (as of September 24, 2010)
 - S&P 500 Return (historical): 7%
- Bond coupon Rate is greater than expected stock return?!?
 - There is tax. But still, too close...
- Cost of Capital = $0.187 \times 4.38 + .813 \times 4.5 = 4.48\%$
- This is too low

Calculate Intrinsic Value

 Discount cash flows for the next 5 years using the WACC as discount rate

$$PV(FCFs) = \frac{FCF_1}{(1+r)} + \frac{FCF_2}{(1+r)^2} + \dots + \frac{FCF_5}{(1+r)^5}$$

• Find terminal value of the company - value beyond 5 years

• Discount Terminal Value (divide by $(1 + r)^5$)

• Fair Value =
$$PV(FCFs) + \frac{\text{Term. Value}}{(1+r)^5}$$

Calculate Intrinsic Value - Example

Wal-Mart Stores Inc.

- WACC = 4.48%: assume it is 6.5%
- $PV(FCFs) = \frac{15.5}{1.065} + \frac{16.6}{1.065^2} + \frac{17.5}{1.065^3} + \frac{18.5}{1.065^4} + \frac{19.8}{1.065^5} = 72.5 B
- Using Perpetuity Growth Model
 - Assume g = 3% (already low), then: Term. Value $= \frac{19.8 \times 1.065}{.065 .03} =$ \$602.4 B

 - Discounted: \$439.7 B. Way too high.
 - Perpetuity Growth Model does not work here. Why?
- Using FCF multiplier (even though WMT is very unlikely to be sold soon)
 - Current FCF multiplier: $\frac{196.6}{14.8} = 13.3$
 - Term. Value = 19.8 × 13.3 = \$263.3 B
 - Discounted: $\frac{263.3}{1.0655} =$ \$192.2 B
- Fair Value = 72.5 + 192.2 = \$264.7 B
- Fair Price = $\frac{\text{Fair Value}}{\# \text{ Shares Outstanding}} = \frac{264.7}{3.64} =$ \$72.7

Advantages and Disadvantages

Advantages

- The concept of intrinsic value seems valid
- A reasonable way to estimate *long-term* value
- Cash is a better estimate of value than earnings
- Gives an idea of what effect certain numbers in financial statements will have on company value

周 ト イ ヨ ト イ ヨ ト

Advantages and Disadvantages

Advantages

- The concept of intrinsic value seems valid
- A reasonable way to estimate *long-term* value
- Cash is a better estimate of value than earnings
- Gives an idea of what effect certain numbers in financial statements will have on company value

Disadvantages

- Estimating too many numbers
- Sometimes hard to predict the values
 - e.g. growth companies, recession
- Firms cook the books
- Model is very sensitive to discount and growth rates
 - These are hard to estimate in current market
 - Interest rate is low

< 回 ト < 三 ト < 三 ト

Concluding Remarks

The steps:

- 1. Forecast revenue growth
- 2. Forecast Free Cash Flows (FCF)
- 3. Determine discount rate
- 4. Calculate intrinsic value of the company

- 4 E N

Concluding Remarks

The steps:

- 1. Forecast revenue growth
- 2. Forecast Free Cash Flows (FCF)
- 3. Determine discount rate
- 4. Calculate intrinsic value of the company

In the end:

- Every model has its own pros and cons
- It comes down to your own judgement of if the model is appropriate or not
- Pick a company and perform DCF on it yourself

周 ト イ ヨ ト イ ヨ ト

Any Questions?

Upcoming Events:

- Speaker Event: John Propper Top Five Principles of Investing
 - Monday, November 22, 7:00-10:00 p.m., South Dining Room, Hart House
- HHIF First Quarterly Meeting
 - Tuesday, November 23, 8:00-10:00 p.m., Debates Room, Hart House

References

- Investopedia DCF Analysis http://www.investopedia.com/university/dcf/default.asp
- Wikiwealth WACC Cost of Capital Portal http://www.wikiwealth.com/wacc#wacc
- 3. Wikipedia DCF, WACC articles http://en.wikipedia.org/wiki/Discounted_cash_flow http://en.wikipedia.org/wiki/Weighted_average_cost_of_ capital
- 5. Morningstar WMT Financial Information http: //quote_morningstar_com/stock/s_aspx?

//quote.morningstar.com/stock/s.aspx?t=WMT®ion=USA

 Google Finance WMT Financial Information http://www.google.com/finance?q=NYSE:WMT

イロト イポト イヨト イヨト 二日