1. Consider the dilation carrying $ω$ to the excircle opposite to A. Point E is mapped to F, which must also be the point of tangency of the excircle to BC.

2. Let the excircle $Ω$ be tangent to BC at F, and G a point such that FG is diameter of $Ω$. Let $ω$ be the incircle of $△ABC$. Then the homothety with centre A carrying $ω$ to $Ω$ maps E to G, so A,E,G are collinear. Hence E is the intersection of AG and DF. Therefore E lies on the line connecting the midpoints of AG,DF which is MI_a.

3. The dilation with centre P carrying $ω$ to $Γ$ sends K to a point M on arc AB not containing P. Line AB is sent to a line l parallel to AB and tangent to $Γ$ at M. Angle-chasing finishes the problem.

4. (Proof from Yufei Zhao’s notes on Lemmas in Euclidean Geometry). Extend KE to meet $Γ$ at M. M is the midpoint of arc BC (see problem 3) hence A,I,M are collinear. Let EI intersect $ω$ at F'. We will show AF' is tangent to $ω$.

Since $∠EF'K,∠MAK$ subtend arcs EK, MK in circles $ω,Γ$ and MK is the image of KE under the homothety carrying $ω$ onto $Γ$ it follows that $∠EF'K = ∠MAK$ so A,K,I,F' are concyclic.

Since $∠BCM = ∠CBM = ∠CKM$ it follows that $△MEC \sim △MCK$ hence $MI^2 = MC^2 = ME \cdot MK$, so MI is tangent to the circumcircle of $△KIM$. Hence $AF'K = ∠AIK = ∠IEK$ so AF' is tangent to $ω$ and $F \equiv F'$.

5. Notice that $∠O_1DO_2 = 90^\circ$. Let $ω_1$ be tangent to AD, DC at F,E and $ω_2$ be tangent to AD, BD at H,G. Then GH, FE intersect at I. The rest is a simple trig bash.

6. Let $Γ$ be the insimilicentre of $ω$ and $Γ$. By the Monge-d’Alembert Theorem A', D, T are collinear. Hence $A'D, B'E, C'F$ intersect at T.

7. $B'C'$ and BC intersect at N; they are polars of A, A' respectively. Hence AA' is the polar of N. [This is a useful fact!] Similarly BB' is the polar of M. Hence MN is the polar of N. The result follows.

8. Let $ω$ be tangent to BC at D. AD intersect $PQ,ω$ at K,S. Considering the dilation carrying the incircle of $△APQ$ to $ω$ it follows that $PK = RQ$ and $MK = MR$. Also $∠RSK = 90^\circ$ hence $MR = MK = MS$ and MS is tangent to $ω$. AD is the polar of T with respect to $ω$ hence TS is tangent to $ω$. The result follows.

9. Let BI intersect EF at X'. EF intersect BC at T, and D be the point of tangency of $ω$ with BC. Then $(T, D; B, C)$ is the angle bisector of $∠FX'D$ hence $X'C \perp BX$. Hence $X \equiv X'$ and X,Y lie on EF.

Let ID intersect EF at N'. Let P, Q be points on AB, AC so that N lies on PQ and $PQ || BC$. The projections of I onto AE, ED, FE are collinear, so by Simpson’s theorem I, P, A, Q are concurrent.

Since $∠PAI = ∠QAI$ it follows that $IP = IQ$ and $N'P = N'Q$ hence A, N', M are collinear and $N' \equiv N$. So N lies on ID.

By angle chasing I is the incentre of $△YXD$ and $△DYX \sim △ABC$. Since DN is the angle bisector of $∠YDX$ (as it contains I it follows that $\frac{NX}{NY} = \frac{DX}{DY} = \frac{AC}{AB}$.

10. Let U, V, W be centers $ω_1, ω_2, ω_3$ respectively. Let R be the intersection of EF, VW; S the intersection of ED, VW, T the intersection of FD, UV. (Some of these might be points of infinity but that’s ok). Then R, S, T are the exsimilicentres between pairs of the three circles. Hence R
lies on BC, S lies on AC, T lies on AB (as they are common external tangents between the pairs of circles). By Monge’s Theorem R, S, T are collinear, hence $\triangle ABC, \triangle DEF$ are perspective with respect to a line. By Desargues’ theorem these triangles are perspective with respect to a point. The result follows.

11. Let $\Gamma, \omega_1(O_1), \omega_2(O_2), \omega_3(O_3), \omega_4(O_4)$ be the circumcircles of the $ABCD, \triangle APB, \triangle BPC, \triangle CPD, \triangle DPA$, respectively ($\omega(O_1)$ means circle ω_1 with centre O_1). Let $\omega_1 \cap \omega_3 = P, N$ and $\omega_2 \cap \omega_4 = P, M$. Then I, the point of intersection of O_1O_3 and O_2O_4 lies on the perpendicular bisectors of PM, PN, hence is the centre of the circumcircle ζ of $\triangle PNM$. Let $AD \cap BC = F, AB \cap CD = G$. Then $OE \perp FG$ by Brocard’s Theorem, and it suffices to show $O I \perp FG$ (as then O, I, E are collinear). By the radical axis theorem, PM, AD, BC are concurrent at F and PN, AB, CD are concurrent at G. Since F lies on the radical axes of circles ζ, ω_3 and ω_3, Γ it follows that F lies on the radical axis of ω_3, Γ. Similarly G lies on the radical axis of ω_3, Γ. So $OE \perp FG$ and the result follows.

12. By Thébault’s theorem O_1, I, O_2 are collinear. After some angle chasing we get I is the midpoint of O_1O_2. Assume l passes through M. Then $\angle O_1MO_2 = 90^\circ$. Also $\angle O_1DO_2 = 90^\circ$ hence O_1, D, M, O_2 lie on a circle with centre I. Hence $ID = IM$. Let the sides of the triangle be a, b, c and F be the point of tangency of the incircle with BC. Then $2BF = BD + DM$ hence $a + c - b = c \cdot \frac{a^2 + c^2 - b^2}{2ac} + \frac{a}{2}$. Simplifying we get $c + b = 2a$. Note: You should not be afraid of using trig bash in your solutions. However, first try to look for a purely geometric solution; use trig bash only when you know where it is going (and not just thoughtless length calculations).

13. Let $\{K\} \equiv CI \cap FE, \{G\} \equiv BI \cap EF$. Then $BK \perp CK$ and $BG \perp CG$. Hence $\{H\} \equiv BK \cap CG$. Let J be the midpoint of EF. Let P' be the intersection by HJ and DM. It suffices to prove that P' is the midpoint of DM.

Let S be the projection of H onto EF and Y the intersection of HD and EF. Since $MD \parallel HS$, in order to prove P is the midpoint of DM, it suffices to prove the pencil $H(M, J, Y, S)$ is harmonic, i.e. that (M, Y', J, S) is harmonic. Since $MD \parallel JS$, considering the pencil $P_\infty(M, J, Y, S)$ and intersecting it with HD (where P_∞ is the intersection of MD and HS) it suffices to prove $(D, Y; I, H)$ is harmonic.

Since BG, CH and ID are altitudes of $\triangle BIC$ it follows that EI is the angle bisector of $\angle KGD$.

Since $\angle HEI = 90^\circ$ it follows that $D, Y; I, H$ is harmonic and the result follows.

14. Let $\Gamma(O)$ be the circle tangent to the lines AB, BC, AD and let $\omega_1, \omega_2, \omega_3$ be the incircles of triangles APD, BPC and CPD respectively.

Since A is the exsimilicenter of ω_1 and Γ and K is the insimilicenter of ω_1 and ω_3, by the Monge-D’Alembert theorem, the line AK intersects the line OI at the insimilicenter of Γ and ω_3. Similarly, line BK intersects OI at the same insimilicenter F of Γ and ω_3. It suffices to prove that E lies on the line OI.

By properties of tangents it follows that $AP + CD = PC + AD$ and $BP + CD = BC + PD$ so there exist circles ω_5, ω_6 inscribed in quadrilaterals $APCD, BCPD$. Let X be the exsimilicentre of ω_1, ω_3 and Y the exsimilicentre of ω_2, ω_3. By Monge-D’Alembert theorem applied to circles $\omega_1, \omega_3, \omega_5$ and to circles $\omega_2, \omega_3, \omega_6$ it follows that A, C, X and B, D, Y are collinear. Let E' be the exsimilicentre of Γ and ω_3. By the Monge’s theorem applied to $\Gamma, \omega_1, \omega_3$ it follows that A, X, E' are collinear. So E' lies on AC and on OI. Similarly E' lies on BD and OI. Hence $E' \equiv F$ and E, O, I are collinear.
15. [Proof by Ivan on AOPS] Let AB, CD meet at X, AD, BC meet at Y, let k meet AB, DC, AD, BC at P, Q, R, S respectively. Using the tangency properties with respect to k we get:

\[BA + AD = BA + AR - DR = BP - DR = BS - DQ = BC + CQ - DQ = BC + CD \]

Let k_1, k_2 meet AC at J, L respectively. Then $AB + JC = BC + AJ$ and $DA + LC = DC + LA$. Adding and using $BA + AD = BC + CD$ we get $JC + LC = AL + AJ$ hence $AL = JC$. Let the excircle of $\triangle ABC$ on the side AC be k_3, and the excircle of $\triangle ADC$ on the side AC be k_4. Then k_3, k_4 meet AC at L and J.

Construct the tangent of k which is parallel to AC (and on the same side of k as AC). Let that tangent meet k at Z. The dilation about B takes k_3 to k and L to Z. The negative dilation about D takes k_4 to k and J to Z. Hence BL and DJ meet at Z.

Construct the two missing tangents to k_1 and k_2 which are parallel to AC, let the points of tangency be M and N respectively. Similar dilation arguments show that B, M, L, Z are collinear and D, N, J, Z are also collinear.

Since JM and LN are parallel and are diameters of k_1 and k_2, then they meet at the centre of dilation which takes k_1 to k_2, which we know is the point Z. Hence Z is the intersection of the common external tangents of k_1, k_2.

16. Let Γ be the circumcircle of $\triangle ABC$. Let ω_1 intersect Γ at B, D and DC at D, E. Then $\angle XED = 180^\circ - \angle XBD = \angle ACK$ so $XE || AC$. Simple angle chasing gives $\angle AXY = \angle AYX$; let $\angle AXY = \alpha$. Then $\angle YXE = \alpha$, XY is tangent to ω_1 at X so $\angle XKC = \alpha$ and $XYCD$ is cyclic. By the radical axis theorem applied to Γ and the circumcircles of ω_1 and $XYCD$ it follows that AQ, XY, CD are concurrent at a point O. Since $XE || YC$ and XY is tangent to ω_1, ω_2 then the homothety with centre O' taking ω_1 to ω_2 takes X to Y and E to C, where O' is the exsimilicentre of ω_1, ω_2. Since $XY \cap EC = O$ it follows that O is the exsimilicentre of ω_1, ω_2.

Simple angle chasing gives the circumcircle ζ of $\triangle XYK$ is tangent to OK at K. Since $\angle XKP = \angle PXY, \angle YKP = \angle XYP$ it follows that $\angle XKY = \angle XYP + \angle PXY = \angle XYP = \angle AXY$ so AB is tangent to ζ at X. Similarly AC is tangent to ζ at Y. Hence KA is the polar of O with respect to ζ (since XY, CD are polars of K, A and intersect at O). Let KA intersect ζ at K, R and XY at S. Then (O, S, X, Y) is harmonic (proved in previous problems) and if M is the midpoint of XY then $OR^2 = OK^2 = OQ \cdot OA = OX \cdot OY$ (power of a point) $= OS \times OM$ (property of harmonic division).

Consider the inversion with centre O that fixes points R, K. The line AK is carried to a circle passing through R, K, O and if this circle intersects OA, OS at Q', M' respectively then $OR^2 = OK^2 = OQ' \cdot OA = OS \cdot OM'$, Hence $Q \equiv Q'$ and $M \equiv M'$ and $OQRMK$ is cyclic. Also K, P, M are collinear (as M lies on the radical axis of ω_1, ω_2). Hence $\angle QKP = \angle QKM = \angle QOY$. Since $AY^2 = AR \cdot AK = AQ \cdot AO$ it follows the circumcircle of $\triangle QPY$ is tangent to AC and $\angle QKP = \angle QOY = \angle QYA = \angle QXA$ and we are done.