Properties of Integers

Theory
In all of the following problems we will be dealing with integers (usually non-negative integers). We say an integer \(a \) is divisible by \(b \) if \(a = bk \) where \(k \) is some integer. This is written as \(b | a \). The number \(b \) is called the divisor of \(a \).

An integer \(p \) is called prime if it has exactly two divisors: 1 and itself. Every integer can be expressed in a unique way as a product of primes: \(a = p_1^{k_1}p_2^{k_2}...p_n^{k_n} \).

General Rules for Divisibility
1. If \(a, b \) are positive integers, and \(a \) is divisible by \(b \), then \(a \geq b \).
2. If \(a \) is divisible by \(b \) and \(k \) is any integer, then \(ka \) is divisible by \(b \).
3. If \(a \) is divisible by \(b \), and \(c \) is divisible by \(b \), then \(a + c \) and \(a - c \) are divisible by \(b \).
4. If \(a = ck \) and \(b = dk \), where \(k \) is some integer, then if \(a \) is divisible by \(b \), then \(c \) is divisible by \(d \).
5. If \(a \) is divisible by \(b \) and \(c \), where \(b \) and \(c \) are primes, then \(a \) is divisible by \(bc \).
6. If \(a^k \) is divisible by a prime \(p \), then \(a \) is also divisible by \(p \).

Exercises
1. Prove that the only even prime number is 2.
2. Express the following numbers as products of primes: \(6, 14, 25, 27, 210, 1000, 1001, 2010 \).
3. Show that the product of any 2 consecutive integers is divisible by 6; the product of any 3 consecutive integers is divisible by 6; the product of any 5 consecutive integers is divisible by 120.
4. Let \(p \) and \(q \) be prime numbers. How many divisors do the following numbers have: \(pq, pq^2, p^3, p^3q^2 \)?
5. Show that a number is a perfect square only when the number of its divisors is odd.
6. If \(a + 1 \) is divisible by 3, prove that \(10a - 2 \) is divisible by 3.
7. If \(m + 2 \) and \(46 - n \) are both divisible by 11, show that \(m + n \) is also divisible by 11.
8. If \(a^2 \) is divisible by 6, show that \(a^2 \) is divisible by 36.
9. Show that if \(t \) is a positive integer and \(t^2 \) divides \(t \), then \(t = 1 \).
10. If \(a, b \) are positive integers, and \(a \) divides \(b^2 \) and \(b^2 \) divides \(a \), then \(a = b^2 \).
11. Show that there is no integer value of \(x \) such that \(4x^2 - 6x + 13 = 0 \).
12. Do there exist positive integers so that the product of their digits is 2010?

Problems
1. Show that if \(n \) is even, then \(n^3 - 4n \) is always divisible by 48.
2. Show that if \(a^2 - 9ab + b^2 \) is divisible by 11, then \(a^2 - b^2 \) is also divisible by 11. (Hint: try to use rule 6 for divisibility and remainders).
3. Show that the number \(n^4 + 4 \) is not prime.
4. Let \(p, q \) be primes. How many divisors does the number \(p^nq^m \) have? \((n, m \) are non-negative integers).
5. Prove that there are infinitely many prime numbers.
6. Given \(m, n \) are positive integers; \(m \) divides \(n^2 \), \(n^2 \) divides \(m^3 \), \(m^3 \) divides \(n^4 \), \(n^4 \) divides \(m^5 \). Show that \(m = n \).
7. \(P \) is a polynomial with all coefficients integers, and \(a, b, c \) are different positive integers. Show that it is impossible to have \(P(a) = b, P(b) = c, P(c) = a \).
8. Do the previous problem, but now if \(a, b, c \) are different integers (not necessarily positive).